	Bith Oractonal	boun/ary lor an	an/ tan o0 51A &)	in"ersely	e#uaton of the form	proo0185A18& 2]
p	o3ers 188 61	ine#uality on a	an/, 1 165A 1, 8 2	proportonal to M is	xN I bx I c by	Create a chain ol	
		graph 1: 8 115;11)	+isualise the	e#ui"alent to C is	Dactorising 1)6:8;	logical steps to	
1 '	S+	2 Construct an/	/iagonals o0 a	proportonal to 17M	:: 2!ol"e a	create a prool in a	
	Pse the	sha/e a graph to	cuboi/2+isualise	11: : 2;: 6 2	#ua/ratce#uaton	:: 2 \$ó @ '@0 E	2 8 "ß1 1'P=
	unctonality o0 a	sho3 a linear	triangle that can be	\$nterpret e#uatons	o0 the 0orm axN I bx		
	cient Bc calculator	ine#uality o0 the	create/ by .oining	that /escribe /irect	I c by 0actorising 1)6		
	3hen calculat ng	Oorm y Hax I bAy J	any three "ertces	proport on 11: :2;	: 8; : : 2 ! ol"e a		
	Bith roots an/	ax I bly K ax	o0 a three	: 62 \$nterpret	#ua/ratce#uaton		
1 '	o3ers N&& , , 2	I b or y L ax I b	/imensional shape	e#uatons that	by rearranging an/		
	Choose the	1: 8 115;11) 2	2 9se Pythagoras	/escribe in"erse	Oactorising 1)6:8;		
	e#uire/ minimum	Construct an/	theorem to Bn/ the	proport on 11: :2;	:: 2\$/ent0y 3hen a		
I I	n/ maximum	sha/e a graph to	length a gi"en	: 6 2 ! ol"e problems	#ua/ratce#uaton		
"	alues 3hen	sho3 a linear	/iagonal in a cuboi/	3hich inclu/e	cannot be sol"e/by		
1	ol"ing a problem	ine#uality in t3o	216 2 9se	Bn/ing the	0actorising 1: 1 : 8;::		
	n"ol"ing upper	"ariables state/	PythagorasF	multplier in a	2 a0e connections		
	n/ lo3er boun/s	implicitly 1: 8 115;	theorem to Bn/	situaton in"ol"ing	bet3een graphs an/		
	52A 21, 1&;1, 2	11) 2 Construct	lengths in three	/irect proport on	#ua/ratce#uatons		
	Calculate the	an/sha/e a graph	/imensional Bgures	11: : 2;: 6 ! ol"e	o0 the 0orm axN I bx		
u	ıpper an/ lo3er	to represent a set	216 2 9se	problems 3hich	I c 4 1 1, 1 1, 8;1, : 2		
1	ooun/s in a gi"en	o0 linear	trigonometry to Bn/	inclu/e Bn/ing the	a0e connections		
S	ituaton 152/121,	ine#ualites in t3o	the angle bet3een a	multplier in a	bet3een graphs an/		
1	& ; 1 ,	"ariables 1: 8 115;	line an / a plane 218	situaton in "ol"ing	#ua/ratce#uatons		
		11) 2 Fin/ the set	,	in"erse proport on	o0 the 0orm axN I bx		
\$		o0 integer		11: : 2;: 6	Ic4/xIe1,11,8;		
	2 9n/erstan/an/	coor/inates that	9n/erstan/ the	1	1,: 2 Fin/		
	use notaton (lor	are solutons to a	limitatons o0	-ecognise <plota< td=""><td>approximate</td><td></td><td></td></plota<>	approximate		
1	ecurring /ecimals	set o0 ine#ualites	sampling 1)2l 16,	interpret= graphs o0	solutions to		
	8: 2& 2 \$nterpret	in t3o "ariables1: 8	551; 552 2 9se a	exponental .	#ua/ratce#uatons		
	calculator /isplay	115;11) 9se set	sample to inler	Ounctons 1: & 1)1;	using a graph 1, 1		
	n"ol"ing a	notation to	propertes ol a	1) 1 2 Plot graphs of	1, 8;1, : 2 De/uce		
	ecurring /ecimal 2	represent the	populaton 1)24 16,	non;stan/ar/	roots of #ua/ratc		
	Con"ert a Oracton	solut on set to an	551;5522'no3	Ounctons 2	Ounctons		
t	o a recurring						

		 	1
1, & &, ; &8 2			
a gro3th or			
problem&, ;	%8 meaning o0 a		
! ol"e proble			
in"ol"ing gro	o3th 215 126 2 Fin/ the		
an//ecay &	, ;&8 term in x 2 lor a		
%/	#ua/ratc se#uence		
A// <subtract< td=""><td>ctA 215 126 2 Fin/ the</td><td></td><td></td></subtract<>	ctA 215 126 2 Fin/ the		
multplyA /i"	i/e= nth term o0 a		
algebraic 0ra	ictons se#uence o0 the		
211):;,22	0orm ax2 215 126 2		
! impli0y an	Fin/ the nth term		
algebraic 0ra	cton		
211a):;,2:	2		
\$/ent0y3he	en it is		
necessary to	Bn/		
t3o linear			
expressions	to		
Oactorise a			
#ua/ratc			
expression			
1)611:2):;	, & 2		
Expan/ the			
pro/uct o0 t	30		
binomials in	"ol"ing		
sur/s 216b 6	5) 2		
Factorise an			
expression			
in"ol"ing the			
/iDerence o	I		
s#uares 1)6			
1)8)8;): 2			
Factorise a			

#ua	ua/ratc			

Pupils use mathematcs as an integral part of	Pupils /e"elop their o3n strategies for sol"ing	Pupils carry out substantal tas0s an/sol"e
classroom act "ites@Rhey represent their 3 or 0 3 ith ob.ects or pictures an / / iscuss it@Rhey recognise an / use a simple pa>ern or relatonship@	problems an/ use these strategies both in 3 or 0 ing 3 ithin mathemat cs an/ in applying mathemat cs to pract cal contexts Shen sol"ing problems 3 ith or 3 ithout CRA they chec 0 their results are reasonable by consi/ering the context Rhey lood 0 or pa>erns an/ relatonships presenting in 0 or mat on an/ results in a clear an/ organise/ 3 ay Ausing CR appropriately Rhey search 0 or a soluton by trying out i/eas of their o3nl	#uite complex problems by in/epen/ently and systematically breading them /o3n into

	mathematcal explanaton an/ experimental
	e"i/ence(l
Pupils try /iDerent approaches an/ Bn/ 3ays	
of o"ercoming /iTcultes that arise 3hen they	
are sol"ing problems@Rhey are beginning to	
organise their 3or0 an/ chec0 results Pupils	
/iscuss their mathematical 3 or 0 an/ are	
beginning to explain their thin0ingl Rhey use	
beginning to explain their thinlolligulatey use	

Develop fluency

consolidate their numerical and mathematical capability from key stage 2 and extend their understanding of the number system and place value to include decimals, fractions, powers and roots

select and use appropriate calculation strategies to solve increasingly complex problems

use algebra to generalise the structure of arithmetic, including to formulate mathematical relationships

substitute values in expressions, rearrange and simplify expressions, and solve equations

move freely between different numerical, algebraic, graphical and diagrammatic representations [for example, equivalent fractions, fractions and decimals, and equations and graphs]

develop algebraic and graphical fluency, including understanding linear and simple quadratic functions use language and properties precisely to analyse numbers, algebraic expressions, 2-Dand -D shapes, probability and statistics!

Reason mathematically

extend their understanding of the number system" make connections between number relationships, and their algebraic and graphical representations

extend and formalise their knowledge of ratio and proportion in working with measures and geometry, and in formulating proportional relations algebraically

identify variables and express relations between variables algebraically and graphically make and test con#ectures about patterns and relationships" look for proofs or counter- examples begin to reason deductively in geometry, number and algebra, including using geometrical constructions interpret when the structure of a numerical problem requires additive, multiplicative or proportional reasoning explore what can and cannot be inferred in statistical and probabilistic settings, and begin to express their arguments formally! Solve problems develop their mathematical knowledge, in part through solving problems and evaluating the outcomes, including multi-step problems develop their use of formal mathematical knowledge to interpret and solve problems, including in financial mathematics begin to model situations mathematically and express the results using a range of formal mathematical representations select appropriate concepts, methods and techniques to apply to unfamiliar and non- routine problems! ! 8 8 8 3 1 G 8 3 8 АН !3 / E \$< \$\$ C !A" 1 = ! ? / E \$ @ Cultural Capital